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Abstract

An equivalent model for smart beams with partially debonded piezoelectric actuator/sensor patches is
presented to analyze the effect of the actuator debonding on both open loop and closed loop behaviors. To
properly model the short debonded part of the actuator in the debonding region, both moment inertia and
transverse shear effect are taken into account. Both displacement continuity and force balance are
guaranteed by imposing continuity conditions at the interfaces between the debonded and perfectly bonded
regions. The eigenvalue problem for the actively controlled beam with partially debonded actuator patches
is derived. The effect of the actuator debonding on the modal shapes is investigated through an example,
and the additional modal shapes induced by the debonding are also examined. Furthermore, a scheme of
restoring the debonding degenerated active control is given based on real-time frequency updating in the
controller, and both theoretical and experimental investigation on the control restoration are carried out.
Comparison with the full model and the experiment shows that the equivalent model is effective for beams
controlled by debonded piezoelectric actuators and sensors.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials have been widely used as distributed actuators and sensors in vibration
and shape control of flexible structures. Some newly developed piezoelectric materials, such as
ferroelectric single crystal, can generate much larger strain under very high actuating voltage and
have good strain–voltage linearity, and hence, more effective active control can be performed
using such high performance materials. However, the large actuating strain of a piezoelectric
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actuator and very high impulse voltage will inevitably increase the chance of delamination of
embedded actuator layers or debonding of surface adhered actuator patches from their host
structures. When a debonding in a piezoelectric actuator or sensor patch occurs during an active
control process, it will significantly affect the control efficiency or may even cause unexpected
control failure in the controlled structures. Since actively controlled structures are much more
vulnerable to actuator/sensor debonding than uncontrolled ones, it is important to investigate the
effects of actuator/sensor debonding on the active control and find the ways of best restoring the
originally designed closed loop control.
In recent years, studies on the delaminations in ordinary composite structures have been widely

carried out, and damage detection of composite structures using piezoelectric sensors has also
attracted an increasing attention [1–3]. However, only a very limited literature can be found on
dynamics and vibration control of actively controlled structures with debonded piezoelectric
actuators/sensors. Chattopadhyay et al. [4] developed a refined higher-order-theory-based finite
element model for dynamics of delaminated smart composite plates. Seely and Chattopadhyay [5]
studied the issue of the piezoelectric actuator debonding in a composite beam by using the finite
element method (FEM) based on a refined higher order theory. The continuity conditions between
the debonded and the non-debonded regions were imposed and implemented using a penalty
approach in their finite element model. Youn et al. [6] also experimentally investigated the
adaptive control, the variations in natural frequencies and actuation characteristics of composite
specimens with actuator delaminations using a neural network controller. Tylikowski [7]
presented a bending-extensional model of a simply supported laminated beam with debonded
piezoelectric actuator elements, in which the edge delamination is modelled by changing the
effective length of the debonded actuator. Recently, Sun and Tong [8] developed a full model of
beams with partially debonded piezoelectric sensors/actuators. In this full model, all the layers
including the sensor, the actuator, the host beam and even the thin bonding layers are modelled in
detail, and both longitudinal and transverse vibrations are considered using classical beam theory
and Timoshenko’s beam theory [9]. The debonding of the piezoelectric actuator is modelled by
assuming that there is no shear and peel stresses in the bonding layer between the actuator and the
host structure in the debonding region. Based on this full model, they investigated the effect of
debonding of the piezoelectric sensor/actuator on closed loop vibration control. They also
presented a scheme for control stability analysis of beams with debonded piezoelectric actuator
layers [9].
Although the full model can give good results for dynamic response of both controlled and

uncontrolled beams with debonded piezoelectric actuator/sensors, it is time-consuming
particularly for the beams with many piezoelectric patches. As a trade off between the accuracy
and the computational effort, an equivalent model of beams controlled by debonded actuator
and sensor patches are given based on the classical laminate theory in this paper. In this
equivalent model, the composite beam segments with perfectly bonded actuators and/or sensors
are treated as single equivalent beam segments. The displacement continuity conditions and force
balance conditions at the interfaces between different composite beam segments are imposed. A
solution scheme for the derived boundary problem is given, and the corresponding eigenvalue
problem is derived for the closed loop controlled beam. A method of restoring the active control
that has been deteriorated by the system change is demonstrated both theoretically and
experimentally.
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2. Equivalent model

2.1. Governing equations

Consider a beam attached with piezoelectric actuator sensor patches, as shown in Fig. 1. The
left piezoelectric patch pair serves as an actuator pair, and the right pair as sensors. Without
losing generality, an edge debonding is introduced at the left end of the upper actuator patch. It is
assumed that the adhesive layers used to bond the piezoelectric patches are very thin so that their
effects on the stiffness and mass of the composite beam can be negligible. The debonding between
the piezoelectric actuator and the host beam is assumed to be throughout the width of the beam,
and the contact and fraction between them are not considered for the sake of simplicity.
The whole composite beam contains several different portions such as the host beam segments,

the beam with debonded piezoelectric patches, and the segments with perfectly bonded piezo-
patches. For different segments, their governing equations have different forms. The governing
equations will be given in segments.
For the portions containing the host beam and two perfectly bonded piezoelectric actuator

layers on its both surfaces (e. g. BC segment in Fig. 1), employing the Timoshenko’s beam theory,
the equations of motion can be derived as follows

raua;tt ¼ Ta;x þ flðx; tÞ;

rawa;tt ¼ Qa;x þ ftðx; tÞ;

Jaca;tt ¼ Ma;x � Qa; ð1Þ

where the subscript a represents the beam with two perfectly bonded actuator layers, T ; Q and M

are the stress and moment resultants, respectively, flðx; tÞ and ftðx; tÞ are the longitudinal and
transverse loads, u and w are the longitudinal and transverse displacements, c is the rotation angle
of the line element originally perpendicular to the longitudinal axis, ra is the mass density for a
unit length, and Ja is the moment of inertia, which are given by

ra ¼
X3
i¼1

ribhi; Ja ¼
b

3

X3
i¼1

riðz
3
i � z3i�1Þ: ð2Þ

In Eq. (2), the subscript 1, 2, 3 refer to the upper piezoelectric layer, the host beam and the lower
piezoelectric layer respectively, b is the width of the composite beam, ri is the mass density, hi is
the thickness, z0; z1; z2 and z3 are the z-co-ordinates of the surfaces and interfaces in the composite
beam from its neutral plane, as shown in Fig. 2.
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Fig. 1. The beam with debonded piezoelectric actuator/sensor patches.
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The rotation angle in Eq. (1) can be expressed as

ca ¼ ga � wa;x; ð3Þ

where ga is the shear strain at the neutral axis given by

ga ¼
Qa

Ga

; ð4Þ

where Ga is the equivalent shear stiffness of the host beam which is dependent on the shape of the
cross section and has the following form [10]

Ga ¼
5b

4

X3
i¼1

Gi½ðzi � zi�1Þ �
4

3h2
ðz3i � z3i�1Þ� ð5Þ

in which Gi is the shear modulus, and h is the thickness of the composite beam.
The relationship between the stress resultant, bending moment and the displacements has the

form as [11]

Ta ¼ Aaua;x þ Baca;x � be311V ðtÞ � be313VðtÞ;

Ma ¼ Baua;x þ Daca;x � be311ra1V ðtÞ � be313ra3VðtÞ; ð6Þ

where e311 and e313 are the piezoelectric stress constants for the upper and lower actuators
respectively, ra1 and ra3 are the z-co-ordinates of the actuators’ mid-planes from the neutral plane
of the composite beam, V ðtÞ are the voltage applied on the actuators, Aa; Ba and Da are the
equivalent extension stiffness, extension-bending coupling term and bending stiffness, which are
given by

Aa ¼ b
X3
i¼1

Eihi; Ba ¼
1

2
b
X3
i¼1

Eiðz2i � z2i�1Þ; Da ¼
b

3

X3
i¼1

Eiðz3i � z3i�1Þ; ð7Þ

where Ei is Young’s modulus.
Denoting

Te
a ¼ Ta þ be311V ðtÞ þ be313V ðtÞ;

Me
a ¼ Ma þ be311ra1V ðtÞ þ be313ra3V ðtÞ;

Yaðx; tÞ ¼ ðua;T
e
a ;wa;ca;Qa;M

e
aÞ
T: ð8Þ
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Fig. 2. Notation for a beam bonded with piezoelectric layer.
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Eqs. (1), (3), (4) and (6) can be combined and written as the following state equation

Ya;x ¼MaYa;tt þ KaYa þ Fa; xBpxpxC ; ð9Þ

where

Ma ¼

0 0 0 0 0 0

ra 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ra 0 0 0

0 0 0 Ja 0 0

2
6666666664

3
7777777775
; Ka ¼

0 %Ae 0 0 0 %Be

0 0 0 0 0 0

0 0 0 �1 1
Ga

0

0 %Ba 0 0 0 %Da

0 0 0 0 0 0

0 0 0 0 1 0

2
6666666664

3
7777777775
; Fa ¼

0

�fl

0

0

�ft

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð10Þ

%Aa ¼
Da

AaDa � B2a
; %Ba ¼ �

Ba

AaDa � B2a
; %Da ¼

Aa

AaDa � B2a
:

Eq. (10) is the actuator equation of the beam bonded with two actuator layers, which establishes
the relationship between the longitudinal and transverse vibrations and the voltage applied on the
actuators. In the following discussion, only the electric load is considered, and the mechanical
load Fa is zero.
The beam bonded with piezoelectric sensor patches on its upper and lower surfaces (e. g. DE

segment in Fig. 1) has the same equations as in Eq. (9) except that the voltage applied on the
sensor patches is zero, namely

Ys;x ¼MsYs;tt þ KsYs; xDpxpxE ð11Þ

where Ys ¼ ðus;Ts;ws;cs;Qs;MsÞ
T and the Ms and Ks can be obtained by simply replacing the

subscript a with s in Eq. (10).
The equations of motion of the host beam itself (e. g. OA, CD and EF segments in Fig. 1) also

have the same form as in Eq. (9), i.e.

Yh;x ¼MhYh;tt þ KhYh; 0pxpxA; xCpxpxD; xEpxpxF ð12Þ

where Yh ¼ ðuh;Th;wh;ch;Qh;MhÞ
T; Mh and Kh can be obtained by letting

ra ¼ r2bh2; Ja ¼ r2bh32=12; Ga ¼ 5
6
G2bh2; V ðtÞ ¼ 0 ð13Þ

in Eq. (10).
For the debonding part (AB segment in Fig. 1), the debonded actuator and the beam bonded

with only one actuator layer vibrate independently according to the assumption. The governing
equations of this part are given as follows.

ARTICLE IN PRESS

D. Sun, L. Tong / Journal of Sound and Vibration 276 (2004) 933–956 937



r1bh1u1;tt ¼ T1;x; r1bh1w1;tt ¼ Q1;x; r1J1c1;tt ¼ M1;x � Q1;

w1;x ¼
6Q1

5G1bh1
� c1; T1 ¼ E1bh1u1;x � be311V ðtÞ; M1 ¼ E1J1c1;x;

rdud ;tt ¼ Td ;x; rdwd;tt ¼ Qd;x; Jdcd;tt ¼ Md;x � Qd ;

wd;x ¼
Qd

Gd

� cd ; Td ¼ Adud ;x þ Bdcd;x � be313V ðtÞ;

Md ¼ Bdud;x þ Ddcd;x � be313radVðtÞ; ð14Þ

where the subscript d represents the composite beam composed of two laminates, namely, the host
beam and the lower actuator layer, rad is the z-co-ordinates of the mid-plane of the lower actuator
layer from the neutral plane of this two layer composite beam. When denoting

Te
1 ¼ T1 þ be311V ðtÞ; Te

d ¼ Td þ be313V ðtÞ; Me
d ¼ Md þ be313radV ðtÞ;

Y1 ¼ ðu1;Te
1 ;w1;c1;Q1;M1Þ

T; Yd ¼ ðud ;T
e
d ;wd ;cd ;Qd ;M

e
d Þ
T; YD ¼ ðYT1 ;Y

T
d Þ
T: ð15Þ

Eq. (14) can be written in the following compact form

YD;x ¼MDYD;tt þ KDYD; ð16Þ

where

MD ¼
M1 0

0 Md

" #
; KD ¼

K1 0

0 Kd

" #

M1 ¼

0 0 0 0 0 0

r1bh1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 r1bh1 0 0 0

0 0 0 r1J1 0 0

2
6666666664

3
7777777775
; K1 ¼

0 1=E1bh1 0 0 0 0

0 0 0 0 0 0

0 0 0 �1 6
5G1bh1

0

0 0 0 0 0 1=E1J1

0 0 0 0 0 0

0 0 0 0 1 0

2
6666666664

3
7777777775
; ð17Þ

Md ¼

0 0 0 0 0 0

rd 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 rd 0 0 0

0 0 0 0 Jd 0

2
6666666664

3
7777777775
; Kd ¼

0 %Ad 0 0 0 %Bd

0 0 0 0 0 0

0 0 0 �1 1=Gd 0

0 %Bd 0 0 0 %Dd

0 0 0 0 0 0

0 0 0 0 1 0

2
6666666664

3
7777777775
;

where the equivalent parameters rd ; Jd ; Gd ; %Ad ; %Bd and %Dd can be obtained by similar procedure as
in the composite beam composed of three laminates.
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2.2. Continuity and boundary conditions

Since each part containing several layers in the beam are treated as a single composite beam
segment, the continuity conditions at the interfaces between different composite beam segments
should be imposed to keep the displacement continuity and the force balance. There are five such
interfaces at A, B, C, D and E, respectively, in the beam shown in Fig. 1.
Interface A:
As shown in Fig. 3, the following equations at the interface A should be imposed:

uþA ¼ u�A � rAc
�
A ; Tþ

A ¼ T�
A ; wþ

A ¼ w�
A ;

cþ
A ¼ c�

A ; Qþ
A ¼ Q�

A ; Mþ
A ¼ M�

A þ rAT�
A ; ð18Þ

where

rA ¼ h1=2� hd ; hd ¼
E2h

2
2 þ E3h

2
3 þ 2E3h2h3

2ðE2h2 þ E3h3Þ
; ð19Þ

where rA and hd are shown in Fig. 3b.
Noting the relationship between the Te

d and Td ; Me
d and Md ; Eq. (18) can be rearranged as

C�
AY

�
A þ Cþ

AY
þ
A þ FAV ðtÞ ¼ 0; ð180Þ

where

C�
A ¼

1 0 0 �rA 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 rA 0 0 0 1

2
6666666664

3
7777777775
; Cþ

A ¼ �I6 ¼ �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666664

3
7777777775
;
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Fig. 3. Continuity conditions at interface A: (a) displacements and (b) forces.
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FA ¼

0

be313

0

0

0

be313rad

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; Y�

A ¼ YhA ¼ YhðxAÞ; Yþ
A ¼ YdA ¼ YdðxAÞ: ð20Þ

Interface B:
This is the interface between the debonded and perfectly bonded regions, at which the following

nine continuity conditions should be applied (see Fig. 4).

uþB ¼ u�B1 � rB1c
�
B ; uþ

B ¼ u�
B2 � rB2c

�
B ; Tþ

B ¼ T�
B1 þ T�

B2;

wþ
B ¼ w�

B1; wþ
B ¼ w�

B2; cþ
B ¼ c�

b1; cþ
B ¼ c�

B2;

Qþ
B ¼ Q�

B1 þ Q�
B2; Mþ

B ¼ M�
B1 þ M�

B2 þ rB1T
�
B1 þ rB2T

�
B2; ð21Þ

where

rB1 ¼ h1=2� ha; rB2 ¼ hd þ h1 � ha;

ha ¼
E1h

2
1 þ E2h

2
2 þ E3h

2
3 þ 2E2h1h2 þ 2E3h1h3 þ 2E3h2h3

2ðE1h1 þ E2h2 þ E3h3Þ
; ð22Þ

where rB1; rB2 and ha are shown in Fig. 4b.
Eq. (21) can also be written into the matrix form as

C�
BY

�
B þ Cþ

BY
þ
B þ FBV ðtÞ ¼ 0; ð210Þ
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where

C�
B ¼

1 0 0 �rB1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 �rB2 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 rB1 0 0 0 0 0 rB2 0 0 0 0

2
66666666666666664

3
77777777777777775

;

Cþ
B ¼

�1 0 0 0 0 0

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

2
66666666666666664

3
77777777777777775

;

FB ¼ ð 0; 0; 0; 0; 0; 0; 0; 0; be311ra3 þ be313ra3 � be313rad � be311rB1 � be313rB2 Þ
T

Y�
B ¼ YDB ¼ YDðxBÞ;Yþ

B ¼ YaB ¼ YaðxBÞ: ð23Þ

Interface C:
The six continuity conditions at interface C can be expressed as

C�
CY

�
C þ Cþ

CY
þ
C þ FCV ðtÞ ¼ 0; ð24Þ

where

C�
C ¼

1 0 0 �rC 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 rC 0 0 0 1

2
6666666664

3
7777777775
; Cþ

C ¼ �I6; FC ¼ �b

0

e311 þ e313

0

0

0

e311ra1 þ e313ra3 þ e311rC þ e313rC

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
;

Y�
C ¼ YaC ¼ YaðxCÞ; Yþ

C ¼ YhC ¼ YhðxCÞ; rC ¼ ha � h1 � h2=2: ð25Þ
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Similarly, the continuity conditions at interfaces D and E can be expressed as

C�
DY

�
D þ Cþ

DY
þ
D ¼ 0; at x ¼ xD

C�
EY

�
E þ Cþ

EY
þ
E ¼ 0; at x ¼ xE

ð26Þ

Note that there is no control voltage related items in the continuity conditions of the sensor
patches.
Boundary conditions:
The boundary conditions at both ends of the host beam can be expressed in the following

general form

P1Yhð0Þ þ P2YhðxF Þ ¼ P0; at x ¼ 0 and x ¼ xF ; ð27Þ

where P1AR6	6 and P2AR6	6 are matrices related to the boundary conditions, and P0AR6 is a
vector composed of the designated displacements and forces at the beam’s ends. In addition, the
boundary conditions of the left end of the debonded actuator can be written as

PdY1ðxAÞ ¼ Pd0V ðtÞ; at x ¼ xA ð28Þ

where PdAR3	6 and Pd0AR3 depends on the constraint at the end of the piezoelectric actuator
patch. When the debonded end of the actuator is free,

Pd ¼

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
64

3
75; Pd0 ¼

�be311

0

0

8><
>:

9>=
>; ð29Þ

2.3. Sensor equation and control law

When the piezoelectric patch is used as a distributed sensor, its charge output can be derived
as [11]

qðtÞ ¼ be31s

Z xE

xD

ðus;x þ rscs;xÞ dx; ð30Þ

where rs is the z-co-ordinate of the mid-plane of the sensor patch from the neutral plane of the
composite beam. When the thickness for each layer in the laminated beam is constant, Eq. (30)
can be simplified as

qðtÞ ¼ be31s½usðxEÞ � usðxDÞ� þ be31srs½csðxEÞ � csðxDÞ� ð31Þ

In closed loop control, the voltage applied on the piezoelectric actuators is designed as a function
of the sensor output signal according to some control laws. In order to control the first several
modes of the composite beam, employ the modal velocity observers (MVOs) for the nth target
mode as follows [12]

xn;ttðtÞ þ 2ocnz1nxn;tðtÞ þ o2cnxnðtÞ ¼ o2cnqðtÞ;

Zn;ttðtÞ þ 2ocnz2nZn;tðtÞ þ o2cnZnðtÞ ¼ ocn ’Zn;tðtÞ;
n ¼ 1; 2;y;N ð32Þ

where ocn is the natural frequency of the observer, z1n and z2n are the damping ratios which can be
adjusted to make the closed loop control more robust, and N is the number of the modes to be
controlled. When the natural frequency of the modal velocity observer ocn coincides with one of
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the modal frequencies of the composite beam, the output ZnðtÞ of the observer will be 180

 out of

phase with the target modal velocity, and hence, the modal velocity of the target mode can be
measured. Therefore, using the MVO, the modal frequencies of the modes to be controlled should
be measured or estimated before the control is performed so that the output of the MVO can be
made as close as possible to the real modal velocity.
To control the first N modes of the beam, the control voltage is designed as

V ðtÞ ¼
XN

n¼1

gnZnðtÞ; ð33Þ

where gn is the control gain for the nth mode. Eqs. (32) and (33) give a practical control scheme,
which is called MVO controller.
In general, due to the error of the measured or estimated frequencies, the observed modal

velocity will not be exactly in phase with the real one, and consequently, it will affect the control
efficiency and may even destabilize the control. In this case, the phase difference between the
observed and real modal velocity highly depends on the damping ratios zn1 and zn2: When the
damping ratios are very small, even a slight error of the observer frequency will result in a
significant phase difference between the observed velocity and the real one. On the contrary, when
the damping ratios of the MVO are larger, the phase distortion of the observed modal velocity will
not be sensitive to the error of the measured frequency. Therefore, for the purpose of robust
control, there are two ways to increase the control robustness. One is to use proper damping ratios
in the MVO, another is to use the frequency as accurate as possible. It is known that debonding of
a piezoelectric patch will lead a frequency change, if the frequency used in the MVO controller is
updated adaptively as debonding develops, the control will be still effective.

3. Solution method

To obtain the eigenvalue problem of the beam with partially debonded piezoelectric patches,
rewrite the state vectors into the following form

Yhðx; tÞ ¼ %YhðxÞelt; YDðx; tÞ ¼ %YDðxÞelt; Yaðx; tÞ ¼ %YaðxÞelt; Ysðx; tÞ ¼ %YsðxÞelt; ð34Þ

where l is known as eigenvalue, %YhðxÞ; %YDðxÞ; %YaðxÞ and %YsðxÞ are the eigenfunctions in different
beam segments. Substituting Eq. (34) into the governing equations, the partial differential
equations can be transformed to ordinary differential equations. For example, the governing
equations in Eq. (9) becomes

%Ya;x ¼ AaðlÞ %Ya; xBpxpxC ð35Þ

where AaðlÞAR6	6 is a matrix with parameter l:

AaðlÞ ¼Mal
2 þ Ka: ð36Þ

Eqs. (35) can be solved in terms of transition matrix, and the relationship between the state
vectors at xB and xC can be expressed as [13]

%Y
�
C ¼ UBCðlÞ %Y

þ
B ð37Þ
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where UBCðlÞ is the transition matrix between xB and xC which is given by

UBCðlÞ ¼ exp AaðlÞðxB � xCÞ½ �: ð38Þ

Following the same procedure, the equations for each segment of the composite beam can be
derived as

%Y
�
A ¼ UAOðlÞ %YO;

%Y
�
B ¼ UBAðlÞ %Y

þ
A ;

%Y
�
C ¼ UCBðlÞ %Y

þ
B ;

%Y
�
D ¼ UDCðlÞ %Y

þ
C ;

%Y
�
E ¼ UEDðlÞ %Y

þ
D;

%YF ¼ UFEðlÞ %Y
þ
E : ð39Þ

Substituting Eq. (34) into the continuity and boundary conditions, yields

C�
A
%Y
�
A þ Cþ

A
%Y
þ
A þ FA %V ¼ 0; at x ¼ xA

C�
B
%Y
�
B þ Cþ

B
%Y
þ
B þ FB %V ¼ 0; at x ¼ xB

C�
C
%Y
�
C þ Cþ

A
%Y
þ
A þ FC %V ¼ 0; at x ¼ xC

C�
D
%Y
�
A þ Cþ

D
%Y
þ
A ¼ 0; at x ¼ xD

C�
E
%Y
�
E þ Cþ

E
%Y
þ
E ¼ 0; at x ¼ xE

Pd
%Y1ðxAÞ ¼ Pd0 %V; at x ¼ xA

P1Yhð0Þ þ P2YhðxF Þ ¼ 0; at x ¼ 0 and x ¼ xF

ð40Þ

where %V can be expressed as follow according to the control law in Eq. (33) and the sensor
Eq. (31).

%V ¼ Gð %Y�
E � %Y

þ
DÞ;

G ¼ be31sHðlÞ½ 1 0 0 rs 0 0 �;

HðlÞ ¼
XN

n¼1

o3cnl

ðl2 þ 2wcnz1nlþ o2cnÞðl
2 þ 2wcnz2nlþ o2cnÞ

: ð41Þ

Inserting Eq. (41) into Eq. (40), Eq. (39) together with Eq. (40) can be written into the following
matrix form

RðlÞZ ¼ 0; ð42Þ
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where

RðlÞ ¼

UAO �I6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 UBA �I12 0 0 0 0 0 0 0 0

0 0 0 0 0 0 UCB �I6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 UDC �I6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 UED �I6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 UFE �I6
0 C�

A 0 Cþ
A 0 0 0 0 0 0 �FAG FAG 0 0

0 0 0 0 C�
B Cþ

B 0 0 0 �FBG FBG 0 0

0 0 0 0 0 0 0 C�
C Cþ

C 0 �FCG FCG 0 0

0 0 0 0 0 0 0 0 0 C�
D Cþ

D 0 0 0

0 0 0 0 0 0 0 0 0 0 0 C�
E Cþ

E 0

0 0 Pd 0 0 0 0 0 0 0 �Pd0G Pd0G 0 0

P1 0 0 0 0 0 0 0 0 0 0 0 0 P2

2
666666666666666666666666664

3
777777777777777777777777775

;

Z ¼ ðYTO;Y
�T
A ;YþT

A ;Y�T
B ;YþT

B ;Y�T
C ;YþT

C ;Y�T
D ;Y�T

E ;YþT
E ;YTF Þ

T: ð43Þ

Eq. (42) gives a complex eigenvalue problem of the beam controlled using partially debonded
piezoelectric patches. The eigenvalues of the closed loop system can be obtained by solving the
following characteristic equation

jRðlÞj ¼ 0: ð44Þ

Once the eigenvalues are solved from Eq. (44), their corresponding eigenvectors can be obtained
from Eq. (42). The eigenfunctions can be constructed in terms of transition matrices as in Eq. (37).
For a controlled beam, its eigenvalues appear as conjugative complex pairs. If all the

eigenvalues have negative real parts, the closed loop system is stable. Each eigenvalue corresponds
to a vibrations mode, whose real part indicates the active modal damping, and whose imaginary
part is the damped frequency for the controlled beam.

4. Examples and experimental investigation

4.1. Comparison with experiment results

To validate the equivalent model, the result obtained by the present model will be compared
with those from the experiment and a full model developed by the authors. To this end, the active
vibration control experiment of a beam with debonded piezoelectric patches was performed using
the MVO controller. The test specimen is a 60 cm	 3 cm	 0.89mm cantilevered aluminum beam
bonded with two pairs of lead zirconate titanate (PZT) patches, as shown in Fig. 5. The left two
PZT patch, 1 cm away from the fixed end to their left ends, are used as the actuators, and upper
PZT patch out of the right two, 8 cm away from the clamped end to their left ends, is used as the
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sensor patch. The Young’s modulus, mass density and the Poisson ratio of the host beam are
69GPa, 2700 kg/m3 and 0.3 respectively. All the four PZT patches have the same geometrical
dimensions and material properties except the piezoelectric constants. Young’s modulus, mass
density and the Poisson ratio of the 4 cm	 3 cm	 0.5mm PZT patches are 70GPa, 7600 kg/m3

and 0.3 respectively. The average piezoelectric stress e31 of actuator patches is 9.065V/m. The
piezoelectric stress constant of the sensor patch is 9.8V/m, and its capacitance is Cp ¼ 41190 pF.
To investigate the effect of the actuator debonding on the open-loop and closed-loop system,
other three specimens, in which an 0.5, 1 and 1.5 cm long edge debondings are introduced,
respectively, using a piece of 0.02-mm-thick Teflon film at the left end of the upper actuator
patches, are also prepared.
In the experiment, the sensor signal was sampled by a computer with a LabVIEW data

acquisition system. A control program was developed based on LabVIEW graphical
programming platform. In order to increase the sampling rate, a control kernel was developed
using C++ language and integrated with the control program by taking advantage of the code
interface node (CIN) function provided by LabVIEW. According to the control law in Eq. (33),
the control program generates the control voltage, which, after amplified by a PI E-507.00
HVPZT power amplifier (output range: �550 to 550V) with gain gp ¼ 100; is fed back to the PZT
actuators.
The first two frequencies of specimen with perfectly bonded PZT patches are measured as 2.45

and 13.53Hz, respectively, which are in good agreement with the theoretical ones shown in
Table 1. The natural damping ratios for the first two modes of specimen 1 are measured as 0.0045
and 0.0013, respectively. The first five frequencies obtained by the equivalent model and the full
model are also given in Table 1. As shown in Table 1, both equivalent model and the full model
can give good estimations for the first five modal frequencies, and the relative errors for the
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estimation are less than 4.3%. The theoretical frequencies are higher than those measured from
the test. The frequencies calculated from the equivalent model are consistently higher than those
from the full model. Table 1 indicates that the full model can provide better estimation for modal
frequencies than the equivalent model at the higher cost in computation.
In the closed loop control, the first two modes are controlled. The hardware control gain in the

experiment can be determined by gh ¼ Gp=Cp ¼ 2:43	 109: The real control gain can be easily
adjusted by multiplying the hardware gain with different constants in the control program to
obtain the desired control effect. To control the first two modes of the four specimens, The
measured modal frequencies (2.45 and 13.53Hz) are used respectively in the modal velocity
observers in Eq. (32), and the damping ratios are taken as xc1 ¼ 0:6 and xc2 ¼ 0:65 for the two
MVOs. The same control gain, g ¼ 2:43	 109; are used for these two controlled modes. Before
controlling each mode, a negative control gain is used to make the controller as an exciter and
excite the designed mode. Then switch off the excitation, and change to a positive gain, the active
control is turned on to control this mode. Fig. 6 gives the control result for the beam with
perfectly bonded actuator patches, and Fig. 7 presents the sensor outputs and the control voltage
for the beam with 1 cm edge debonding at the left end of the upper actuator patch. Both Figs. 6
and 7 show that the first two modes are successfully controlled by the MVO controller even in the
presence of the actuator debonding. The active damping ratios measured in the experiment for all
specimens are listed in Table 2. As a comparison, the theoretical results obtained from the present
model and the full model are also given in Table 2.
Table 2 shows that the active damping ratios correlate well to the experiments results,

particularly for the first mode. For example, for the four specimens with different lengths of
debonding, the damping ratios of the first mode obtained by the present model are 0.0796, 0.0753,
0.0715 and 0.0679 respectively, and those measured in the experiment are 0.072, 0.066, 0.065 and
0.063, the relative errors are 10.6%, 14.1%, 10% and 7.8%, respectively. For the second mode,
the theoretical damping ratios calculated from the present equivalent model are larger than the
tested ones, and their relative differences are within a range from 37% to 51%. It can be observed
from Table 2 that the active damping ratios obtained from the equivalent model are also in
agreement with those from the full model, and their relative differences are less than 22%. It is
noted that the equivalent model gives larger estimations for both frequencies and damping ratios
than the full model in most cases.
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Table 1

Frequencies of the beam with perfectly bonded PZT patches

Mode no. Present model Full model Experiment

Frequency (Hz) Error (%) Frequency (Hz) Error (%) Frequency (Hz)

1 2.499 2 2.469 0.78 2.45

2 14.106 4.26 13.963 3.20 13.53

3 35.510 2.63 35.221 1.79 34.60

4 66.306 2.94 65.824 2.19 64.41

5 110.618 1.97 109.852 1.26 108.48
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4.2. Modal shapes of beam with debonded PZT patch

The debonding of the actuator can affect not only the modal frequencies and damping ratios,
but also the modal shapes of the beam. To examine the modal shapes of the beam with a 2 cm
edge debonding of the actuator, its eigenvalues and the associated eigenfunctions can be solved
from Eqs. (44) and (42) respectively. The first four eigenvalues of the open-loop beam are solved
as 715.62I, 788.01I, 7221.64I and 7415.10I, respectively, i.e. the first four modal frequencies
are 2.49, 14.00, 35.27 and 66.07Hz, which are smaller than those of the beam with perfectly
bonded actuators. Substituting each eigenvalue into Eq. (42), and normalizing the eigenvector by
setting the tip deflection as 1, the eigenvector related to this eigenvalue can be obtained. This
eigenvector can give both displacement modal functions and force modal functions because
the state vector consists of displacements and internal forces. The first four modal functions for
the open loop beam with 2 cm debonded actuator patches are plotted in Fig. 8. It can be seen
that the debonded part of the actuator almost has the same transverse displacement with the
corresponding part of the host beam for the first four modes, and the differences between them are
not noticeable in this case, as shown in Fig. 8(a) and (b). However, the rotation angles of the
debonded part of the actuator are quite different from those of the corresponding part of the host
beam, as shown in Fig. 8(c) and (d). It is noted that any point of the debonded actuator part has
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Fig. 6. Time history of the sensor output and the control voltage for beam with perfectly bonded actuators: (a) mode 1

and (b) mode 2.

D. Sun, L. Tong / Journal of Sound and Vibration 276 (2004) 933–956948



almost the same rotation angle as the interface point of debonding. Since the modal frequencies
for the first four modes of the beam are much lower than the additional frequencies, i.e., the
resonance frequencies of the debonded actuator part, its elastic strain is very small and its
movement is very close to the rigid movement.
Besides the modes of the original system without actuator debonding, additional modes will be

induced by the debonding of the actuator. In this case, the debonded part of the actuator vibrates
similar to a beam with an elastic support, and its vibration will be coupled with the original system
and results in the additional modes. The frequency for of first additional mode is calculated as
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Table 2

Comparison of the theoretical active damping ratios with the test ones

Mode no. Debonding length (cm) Present model Full model Experiment

1 0 0.0796 0.0675 0.072

0.5 0.0753 0.0640 0.066

1.0 0.0715 0.0615 0.065

1.5 0.0679 0.0590 0.063

2 0 0.0385 0.0317 0.028

0.5 0.0364 0.0288 0.024

1.0 0.0343 0.0269 0.023

1.5 0.0324 0.0252 0.022
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370.475Hz, which lies between the 8th (302.3Hz) and 9th (396.789Hz) modal frequencies of the
original beam without actuator debonding. Fig. 9 gives the modal shape of the first additional
modal shape. The frequency of the second additional mode induced by the edge debonding is
2222.9Hz, and its modal shape is also shown in Fig. 9. As shown in Fig. 9, when the beam
vibrates according to these two additional modes, the main vibration part of the beam is the
debonded part of actuator only, whereas other parts of the beam almost remain still.
The vibration of the debonded part of the actuator can affects the frequencies and modal

shapes of its neighbor modes more remarkably than those of other modes. For example, the first
additional mode is inserted between the 8th and 9th mode of the original system and changes their
frequencies from their original values to 301.504 and 399.577Hz, respectively. It also changes the
frequency of the lower neighbor mode of the second additional mode from original 1851.34 to
1838.76Hz and pushes the higher neighbor from original 2193.09 to 2146.09Hz. In this case, the
debonded part of the actuator is deeply involved in its neighbor mode because of the closeness of
their frequencies, as shown in Fig. 10. Fig. 10 gives the 10th and 21st modal shapes of the beam
with debonded actuator whose frequencies are close to the first two additional modes. As
indicated in Fig. 8, unlike the lower modal shapes shown in Fig. 8, the contribution of the
debonded part of the actuator to these two mode is significant.

4.3. Control restoration

In the active vibration control, the control effects of the MVO controller depend on two
parameters, namely, the frequencies and damping ratios of the MVO. It is well known that
debonding of the actuator will change the frequencies of the beam, and consequently affects the
control efficiency of the active control and may even destabilize the closed loop control. A natural
way to improve the efficiency of the active control is real-time measuring of the frequencies and
their updating in the controller. This scheme is expected to best restore the original control of the
beam degenerated by a debonding of the PZT actuator. To demonstrate the effect of such scheme,
both theoretical and experimental investigations are carried out. In the experiment, since it is hard
to change the frequencies quickly using four specimens with different debonding lengths, only the
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specimen with perfectly bonded PZT actuators is used and the frequency change is made by
adhering a pair of mass patches with different lengths on its free end.
The attached mass patches are made of the same material as the host beam, and their thickness

and width are also identical. Three pairs of mass patches with length of 1, 2 and 3 cm were
prepared and were attached each time using double-sided adhesive tape at the free end of the
specimen. In order to measure the first several frequencies online, a frequency detection program
is added to the control program, in which the power spectrum and the peak detector functions
provided by LabVIEW system are employed. Before the active control, a voltage impulse is
applied to the actuator patch to excite the beam, and the frequency detection program run
simultaneously to measure the frequencies. Then the measured frequencies are input to the MVO
controller in control program so that the vibration can be adaptively controlled.
Table 3 lists the first five frequencies of the beam attached with different mass patches measured

in the experiment. The frequencies obtained by the equivalent model are also given in Table 3. It
can be seen from Table 3 that the theoretical frequencies obtained by the present model are in
good agreement with those measured in the experiment, and their relative differences are less than
5.7%. Table 3 also shows that the mass attachment at the free end of the cantilever beam can
decrease the modal frequencies of the beam, particularly the first one. For example, a pair of 3 cm
mass patches cause a reduction in the fundamental frequencies by 17.1% according to the test
data and 16.0% via the theoretical data. It can also decrease the fifth modal frequency by 4.5%.
To investigate the effect of adaptively changing the frequencies in the MVO controller, the first

two modes are actively controlled for the specimen with different mass attachments. For each
mode of the beam with each kind of mass attachment, the active control was performed twice. At
the first time, the frequencies of the original beam (without mass attachment) were used in the
MVO controller to control the beam with the mass attachment, and in the second time, the
frequencies in the MVO controller were updated to the online detected ones. Fig. 11 presents the
time history of both sensor outputs and control voltages in the control process. The active
damping ratios provided by the active vibration control can be measured from the time history of
either the sensor output or the control voltage, and they are show in Fig. 12. For the purpose of
comparison, the theoretical damping ratios obtained by the present equivalent model are also
given in Fig. 12. It can be seen that the theoretical damping ratios correlate reasonably well in
trend to the measured ones for both vibration modes.
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Table 3

Frequencies of the cantilever beam attached with mass patches (Hz)

Mode no. No mass patches 1 cm mass patches 2 cm mass patches 3 cm mass patches

Test Theorya Test Theorya Test Theorya Test Theorya

1 2.45 2.499 2.26 2.338 2.13 2.211 2.03 2.108

2 13.53 14.106 12.72 13.413 12.31 13.016 12.15 12.783

3 34.60 35.510 32.3 34.099 31.76 33.492 31.59 33.239

4 64.41 66.306 61.69 63.793 61.12 63.009 61.02 62.814

5 108.48 110.618 104.53 106.716 103.68 105.888 103.6 105.808

aPresent equivalent model.
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Fig. 11. Sensor output and control voltage in the experiment of vibration control of beam with different mass patches:

(a) 1 cm mass patches, mode 1, controller using original frequency; (b) 1 cm mass patches, mode 1, controller using

updated frequency; (c) 1 cm mass patches, mode 2, controller using original frequency; (d) 1 cm mass patches, mode 2,

controller using updated frequency; (e) 2 cm mass patches, mode 1, controller using original frequency; (f) 2 cm mass

patches, mode 1, controller using updated frequency; (g) 2 cm mass patches, mode 2, controller using original

frequency; (h) 2 cm mass patches, mode 2, controller using updated frequency; (i) 3 cm mass patches, mode 1, controller

using original frequency; (j) 3 cm mass patches, mode 1, controller using updated frequency; (k) 3 cm mass patches,

mode 2, controller using original frequency; and (l) 3 cm mass patches, mode 2, controller using updated frequency.
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As shown in Fig. 12, when the modal frequencies are changed by attaching a pair of mass
patches, the control efficiency of the original frequency-based controller will be reduced. For
example, according to the experimental results, the first and the second modal damping ratios
decrease 10% and 11% respectively due to the frequency change caused by a pair of 3 cm mass
patch attachment at the free end of the test specimen. The reductions of the theoretical damping
ratios due to the frequency shift are even larger. Fortunately, the deteriorative active control due
to the frequency change can be compensated by detecting the frequencies and adaptively replacing
the original ones in the controller with them. For instance, when constantly updating the
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Fig. 11 (continued).
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frequencies in the controller as the mass attachment changes, the measured damping ratios for the
first two controlled modes of the beam with a pair of 3 cm long mass patches increase 4.7% and
8% respectively. Theoretically, these increments of the active damping ratios are even larger and
up to 37.9% and 16.3% for the controlled two modes respectively. Moreover, adaptively updating
the frequencies in MVO controller can also improve the robustness of the active control. For
example, when the first mode of the beam with a pair of 3 cm mass patches is controlled by the
controller designed for the beam with no mass attachment, the second mode will be excited by a
negative damping ratio �0.000386. After redesigning the controller according to the new
frequency parameter, this negative damping ratio reduces to �0.00024, whose absolute value is
much smaller than the natural damping ratio 0.0013, and hence the stability of the second mode is
improved.
In practice, to prevent the control failure caused by the sudden debonding of the piezoelectric

actuator or sensor patches, the frequency detection should be constantly detected and updated in
the controller in every control loop. The computation process of the frequency detection,
however, should be fast enough so that all the computation required by frequency detection and
the control voltage design can be completed within the properly selected sampling interval. Except
upgrading the hardware, some real-time algorithms [14] can be employed instead of the power
spectrum method to estimate the frequencies quickly.

5. Conclusion

An equivalent model of the beams with partially debonded piezoelectric actuator and sensor
patches and the solution scheme are given based on classical laminate theory and Timoshenko’s
beam theory. The continuity conditions at the interfaces between different composite beam
segments as well as the interfaces between the perfectly bonded and debonded region are
formulated for the purpose of displacement continuity and force balance. The effect of the edge
debonding of an actuator patch on the modal shapes of the composite beam is studied. In
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addition, a scheme to best restore the closed loop control, which has been worsened by the
actuator debonding, is theoretically and experimentally demonstrated. Illustration examples show
that the results obtained from the equivalent model are in good agreement with those from the full
model and the experiment. The equivalent model can be employed incorporated with the full
model if necessary.
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